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A b s t r a c t . The suitability of the hyperspectral transmit-
tance imaging technique was assessed in terms of detecting the 
internal intrusions (pits and their fragments) in cherries. Herein, 
hyperspectral transmission images were acquired in the visible 
and near-infrared range (450-1000 nm) from pitted and intact 
cherries of three popular cultivars: ‘Łutówka’, ‘Pandy 103’, and 
‘Groniasta’, differing by soluble solid content. The hyperspectral 
transmittance data of fresh cherries were used to determine the 
influence of differing soluble solid content in fruit tissues on pit 
detection effectiveness. Models for predicting the soluble solid 
content of cherries were also developed. The principal component 
analysis and the second derivative pre-treatment of the hyper-
spectral data were used to construct the supervised classification 
models. In this study, five classifiers were tested for pit detection. 
From all the classifiers studied, the best prediction accuracies for 
the whole pit or pit fragment detection were obtained via the back-
propagation neural networks model (87.6% of correctly classified 
instances for the training/test set and 81.4% for the validation set). 
The accuracy of distinguishing between drilled and intact cherries 
was close to 96%. These results showed that the hyperspectral 
transmittance imaging technique is feasible and useful for the 
non-destructive detection of pits in cherries.

K e y w o r d s : cherry, hyperspectral transmittance, pit detec-
tion, soluble solid content

INTRODUCTION

Tart cherries (Prunus cerasus) are greatly appreciated 
by consumers for their taste and nutritional properties. The 
European Union is a major world producer of sour cherries, 
with a total of 655,000 MT of production for the 2016 sea-
son (FAOSTAT, 2016). Most of the produced cherries are 
processed and sold frozen or canned, with a majority being 
pitted (USDA, 2016). The fruit quality classification is 

currently based on the evaluation of the surface properties 
of the fruits, including surface colour, shape and defects. 
However, in cherries processing, there are many internal 
features, such as pit presence, decay and insect damage, 
which can have impact on both the quality and safety of 
these products (Donis-González et al., 2015; Xing et al., 
2008). Effectively sorting out these undesirable features 
during handling and processing is an underlying issue 
determining the quality of the final product. Hence, new 
methods, including computed tomography (CT), x-ray 
imaging or near infrared spectroscopy, are being tested 
for detecting external and internal inhomogeneities within 
fruits tissue (Kawano, 2016; Nicolaï et al., 2014).

A variety of techniques have been reported for pit and 
pit fragments detection in stone fruits (Allen et al., 1996), 
and in other commodities with seeds, such as olives (Zion 
et al., 1997) and dried plums (Haff et al., 2005). Moreover, 
considerable development was achieved in attempts to 
detect pits and their fragments in cherries (Haff et al., 2013). 
Timm et al. (1991) studied different methods, including 
microwave transmission, ultrasound reflection, light-beam 
interruption, light-beam transmission and machine vision 
for pit detection. They demonstrated that light transmission 
coupled with machine vision and image analysis was able 
to detect 95% of the cherries with pits. Even better results 
(97% accuracy in classifying both pitted and unpitted cher-
ries) were obtained using nuclear magnetic resonance 
(NMR) by Zion et al. (1994). The NMR has been also used 
to identify pits in olives (Zion et al., 1997). The accuracy 
of this method was 97%. However, it is costly and unlike-
ly to be adopted by the industry. Haff et al. (2013) used 
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a one dimensional x-ray detector array for detecting pits in 
cherries. This method was found to be 97.3% accurate in 
classifying pitted cherries, and 94% in classifying unpit-
ted fruits. Unfortunately, the x-ray imaging method is also 
expensive and needs a robust electrical energy supply (Haff 
and Toyofuku, 2008). In recent years, CT has also been 
tested for detection of pit and pit fragments in fruits. For 
this purpose, agarose phantoms were developed by Donis-
González et al. (2015). The authors have demonstrated that 
the technique in question allows the distinguishing of pit 
and pit fragments with a high accuracy rate (R = 0.99). Still, 
because of the economic cost and lack of speed, CT imag-
ing has proven to be non-practical for being implemented 
as a real time food inspection technology.

In agriculture, hyperspectral imaging (HSI) systems 
using appropriate illumination patterns, such as reflec-
tance, transmittance and interactance (Pan et al., 2017; 
Szuvandzsiev et al., 2014), have been successfully dem-
onstrated to be accurate enough for the routine inspection 
of internal quality parameters in food products (Lu et al., 
2017). Recently, this technology has also been commonly 
employed to assess the soluble solid content (SSC), titrable 
acidity (TA), pH, and firmness in hami melons (Sun et al., 
2016), and persimmon (Munera et al., 2017). Moreover, 
several studies have demonstrated the feasibility of HSI for 
detecting defects in fruits and vegetables (Baranowski et 
al., 2013; Pu et al., 2015). Song et al. (2016) conducted 
a study to detect black heart in white radish. Based on 4 
selected wavelengths and using Fisher’s linear discriminant 
analysis (FLDA), 98.4% discrimination accuracy of defect 
radishes was obtained. In addition, cold injury in peaches 
was successfully detected using HSI and an artificial neural 
network (ANN) model (Sun et al., 2017). The overall clas-
sification accuracy of chill damage was 95.8%. 

Therefore, the objective of this research was to exami- 
ne the applicability of hyperspectral imaging in the visible 
and near-infrared (VNIR) wavelength range for detecting 
pits in fresh cherries of three selected cultivars. The specific 
aims of this study were to: (1) evaluate the applicability 
of  hyperspectral transmittance imaging over the spectral 
range of 400-1000 nm of fresh tart cherries, so as to detect 
pits and pit fragments; (2) identify the optimal wavelengths 
for pit and pit fragments detection; (3) develop classifica-
tion models based on selected wavelengths, and compare 
the classification performance among different classifiers; 
(4) investigate the feasibility of using VNIR hyperspectral 
transmission data to predict SSC contents of different varie- 
ties of cherry.

MATERIALS AND METHODS

For the research purpose, 540 cherry fruits belonging to 
three cherry (Cerasus vulgaris Mill.) cultivars: ‘Łutówka’, 
‘Pandy 103’ and ‘Groniasta’ were purchased from a local 
fruit and vegetable cold storage plant (Fructosad, in 

Ratoszyn, Poland). The cultivars were selected based on 
their difference in physical properties, especially SSC 
(Wojdyło et al., 2014). The samples had similar sizes and 
shapes, and were free of external defects (no bruising, 
cracking or signs of diseases) based on visual inspection. 
No significant differences in colour were observed within 
each cultivar. It was expected that differences in cherry size 
could strongly influence pit detection (Qin and Lu, 2005). 
Therefore, cherries with a large range of sizes (diameter 
ranging from 15-22 mm) were used in each variant of the 
experiment, representing 99% of all the available cher-
ries. Cherries from each cultivar were divided into three 
groups, each containing 60 cherries: cherries with whole 
pit, cherries with pit fragments, and cherries without a pit. 
The pit removal was done with the use of a commercial 
hand-held cherry pitter with a plunger diameter of 3 mm. 
To create a variant with pit fragments, the pits removed 
from the cherries were crushed with a hammer. The areas 
of pit fragments and their highest lengths were determined 
using an average of three measurements of their sizes with 
a calliper. Such measurements were calibrated for selected 
pit fragments on the base of 3D scanning with microto-
mograph GE Nanotom 180 (GE Sensing and Inspection 
Technologies GmbH, Wunstorf, Germany). For the 3D 
analysis of the one side area, VG Studio MAX 2.1 software 
was used. Only fragments with the one side (outer surface) 
area between 4 mm2 and 8 mm2 were selected. Another cri-
terion for pit fragment selection was the distance between 
two most distant points on the pit fragment surface being 
not higher than 3 mm. The smallest outer surface area of the 
pit fragment of 4 mm2 was chosen in the study because such 
fragments were readily detectable by the hyperspectral sys-
tem. In one drilled cherry fruit, one pit fragment was put 
inside. During the experiment, fresh samples were stored 
at 5ºC and removed from cold storage about two hours 
before hyperspectral imaging to allow them to reach room 
temperature.

The hyperspectral transmittance imaging system used 
in this study consisted of a linear hyperspectral scanner 
composed of a VNIR camera with an ImSpector V10E 
imaging spectrograph for the spectral range of 400-1000 
nm. The device was manufactured by SPECIM, Finland. 
A transmittance illumination unit consisted of two linear 
halogen lamps of 100 W each. The lamps were housed in 
an aluminium enclosure installed below the table and posi-
tioned on the belt. The fruit samples were placed in two 
rows on a positioning table having six holes, each 15 mm 
in diameter. The light source illuminated the cherry from 
below in the vertical direction towards the detector.

Hyperspectral transmission images were obtained for 
all cherries belonging to nine variants. The exposure time 
was set at 16 ms for obtaining good quality images without 
saturation. The spatial dimension of all the images acquired 
in this work was 696 x 519 pixels; a total of 519 images 
were collected in the spectral range of 450-1 000 nm after 
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performing 2 x 2 binning operations in the spatial and spec-
tral directions. The measurements were performed in a dark 
room to prevent the influence of external illumination.

In order to assess the influence of the internal fruit qual-
ity on transmission spectra, the SSC was determined using 
traditional destructive tests. After the image acquisition, 
each cherry was cut in half. Juice from both cherry halves 
was extracted, and the SSC (%) was measured using a PAL-
BX/RI pocket refractometer produced by Atago Co., Ltd., 
Tokyo, Japan.

Hyperspectral images were analysed to extract informa-
tion about the spectral properties of both pitted and unpitted 
fruits, for the purpose of optimizing pit and pit fragments 
detection, selecting the effective wavelengths and apply-
ing the adequate classification. After image acquisition, 
the areas containing regions of interest (ROI), i.e. regions 
including the area of whole cherry fruit with a pit, pit 
fragment, or without a pit, were identified from the hyper-
spectral cube. To distinguish the ROI areas, a script was 
written using ImageJ software. The segmentation proce-
dure was a modification of the procedure proposed earlier 
by Baranowski et al. (2013). In the first step, one image 
was selected to create a binary mask of the fruit (herein, the 
762 nm wavelength image was used due to the high contrast 
between fruit surface and background). This binary mask of 
the fruit surface was subsequently applied to all images in 
the hyperspectral cube to eliminate the background. Each 
selected ROI consisted of about 15 000 pixels. The average 
transmittance spectrum from the ROI of pitted and intact 
cherries was computed by averaging the spectral value of 
all pixels in the ROI for each segmented cherry image. 
In this way, one average spectrum was obtained for each 
cherry sample. The mean transmittance spectra calculated 
from the ROI of fruits with pits were compared with the 
same fruit after the pitting procedure (the fruit that does not 
contain a pit) and with the variant containing pit fragments.

The pre-treatment of spectral characteristics was com-
pleted with the use of the Unscrambler X ver. 10.1, CAMO 
Software, manufactured in Oslo, Norway. Prior to model-
ling, the pre-treatment of the mean spectral data consisted 
of the application of an automatic baseline correction and 
a second derivative calculated using the Savitzky-Golay 
method. The automatic baseline correction was chosen to 
remove the baseline effects from the spectra which occurred 
during spectral collection. The derivative processing effec-
tively reduced the image artefacts caused by non-uniform 
illumination and also eliminated the background signal. The 
effectiveness of this pre-treatment method was confirmed 
by Siedliska et al. (2014) and Baranowski et al. (2015). In 
order to reduce redundancy and co-linearity in the hyper-
spectral data collected, as well as to improve the efficiency 
of pit detection and to meet the inspection speed required 
by industry, wavelength selection was a critical and impor-
tant step. In this study, two different methods were used to 
select key wavelengths. In the first method, the appropriate 

data were selected as attributes from peaks in the second 
derivative spectral characteristics curves. Peaks occurring 
in the second derivative curve show the curvature of the 
original spectra. The most characteristic feature of the sec-
ond derivative is a negative band with a minimum at the 
same wavelength as the maximum in the zero-order band. 
There are also two additional positive bands on either side 
of the negative peak (Becker et al., 2005). Based on this 
method, 27 wavelengths were selected as attributes from 
the peaks in the spectral characteristics second derivative. 
These were then used to construct the supervised classifica-
tion models. The second method for reducing the number 
of data features in the spectral data was the principal com-
ponent analysis (PCA) used for the smoothed spectra after 
second derivative pre-treatment. The method is based on 
the fact that neighbouring bands of hyperspectral images 
are highly correlated and often convey the same informa-
tion about the object. In this method, the original data are 
transformed to remove correlation among the bands. This 
process is based on identification of the optimum linear com-
bination of the original bands accounting for the variation 
of pixel values in any particular image. This multivariate 
statistical technique used for the whole spectral data cube 
allowed a decrease in the large number of potential wave-
lengths, to several non-correlated principal components 
(PCs). A similar methodology, used as the pre-processing 
method before supervised classification, was tested by 
other authors (Liaghat et al., 2014). It is recommended that 
the number of PCs (spectral features) should be selected 
such that the PCs represented >90% variability within the 
original data. In this study, the first PCA components were 
used as independent variables in the classification mod-
els of pit detection .They covered 97.2% of all variability 
within the data. Data analysis and classification were then 
performed on the transmittance hyperspectral data of the 
fruit samples. In this study, for the supervised classifica-
tion methods, cherry samples were randomly selected into 
training and test sets consisting respectively of 90 and 10% 
of all the test population. The training data set was used to 
build the classification model, while the test data set was 
used to test its capability for classifying new samples. The 
learning and testing procedure was repeated ten times. For 
each new run, the instances selected as training and test 
sets were changed (cross-validation method). The strati-
fied 10-fold cross-validation method has been proven as 
the standard evaluation technique in the events where only 
limited data is available. This technique is also regarded 
as being the most rigorous (Witten and Frank, 2005). In 
this study, a supervised learning approach was employed 
to verify the classification algorithm. All the classifica-
tion algorithms were implemented using comprehensive 
software called the Waikato Environment for Knowledge 
Analysis, or Weka. This software contains tools for data 
pre- and post-processing, and for evaluating the results of 
learning schemes. Pre-processing of the hyperspectral data 
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consisted of choosing, from the whole spectral range, the 
range where spectral characteristics of the signal were suf-
ficiently strong. Due to the fact that transmittance for cherry 
samples at 600 nm or lower proved relatively low when 
compared to those between 600-1 000 nm, only the wave-
length range from 600-1 000 nm was used for the analysis. 
Of the different classifiers available in Weka, the five with 
the best prediction accuracies were chosen for comparison. 
These classifiers are presented in Table 1, along with a gen-
eral description and the actual parameters determined by 
this study.

The prediction models of SSC for the three cherry cul-
tivars studied were created using the Weka Knowledge 
Flow Interface. This software was used for developing 
the backpropagation neural networks (BNN) and princi-
pal component analysis-backpropagation neural networks 
(PCA-BNN) models. The BNN model was created using 
wavelengths obtained as attributes from the peaks in the 
second derivative of the spectral characteristics of pitted 
cherries belonging to the three studied cultivars. For the 
PCA-BNN model, the PCA was used to extract information 
from the entire spectral range. All five principal compo-
nents were used as neurons of the network input layers for 
building BNN. The quality of the models was evaluated 
using the coefficient of determination (R2), the root mean 
square error of correlation (RMSEC), and the root mean 
square error of prediction (RMSEP). It is generally recom-

mended that a good model be characterized by high R2, low 
RMSEC and RMSEP, and also a small difference between 
RMSEC and RMSEP. In some publications, the standard 
error of prediction (SEP) is reported instead of the RMSEP. 
The difference between RMSEP and SEP was explained by 
Golic and Walsh (2006). 

RESULTS AND DISCUSSION

The hyperspectral scanning of the cherries with 
transmittance mode enabled visualization of the presence 
of a pit within the tested fruits. However, the accuracy of pit 
detection depended on the size of the pit/pit fragments and 
the wavelength analyzed. The pit regions were reflected 
in the transmittance images as areas of lower intensity of 
transmitted light. To better visualize the presence of pit 
or lack of pit within cherries, a multiband composition 
images were created. An example of a representative three-
band (650, 736, and 815 nm) hyperspectral transmittance 
composition of intact and pitted cherries of three studied 
cultivars is presented in Fig. 1. It can be noted in these 
images that, when cherries contain a pit or pit fragments, 
a darker area in the middle of the transmittance image of 
the fruit occurs, with an intensity differing for various 
cultivars and particular variants of the experiment (whole 
pit, pit fragment). The occurrence of the darker regions in 
the images of cherries with pit/pit fragments is the result 
of the higher optical density of a pit, as compared to fruit 

Ta b l e  1. Chosen features of the classifiers used in the study

Name of classifier’s library Description of algorithm Acronym Chosen parameters of classifier

Naive Bayes

Naive Bayes classifier which 
uses estimator classes. 
Numeric estimator precision 
values are chosen based on 
analysis of the training data.

NB
Use Supervised Discretization: true,
Debug: false,
Use Kernel Estimator: false

LibSVM

A wrapper class for the libsvm 
tools. Allows users to 
experiment with One-class 
SVM, Regressing SVM, and 
nu-SVM supported by 
LibSVM tool.

SVM
SVM Type: nu-SVC, Kernel Type: linear;
Ny: 0.5, Normalize: true,
Probability Estimates: true

Logistic Builds linear logistic 
regression models LLR Debug: false, MaxIts: -1, Ridge: 1.0E-8

Multilayer Perceptron Uses backpropagation neural 
networks to classify instances. BNN

AutoBuild: true, Learning rate: 0.3,
Momentum: 0.2,
Training time: 500
Hidden layers = (attribs  +  classes) / 2

Random Forests Classifier for constructing a 
forest of random trees. RF

Debug: false,
MaxDepth: 0,
Num of Features : 0,
Num of Trees: 10,
Seed : 1
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flesh. The size of this shadow may be influenced by the size 
of the pit and also by the orientation of the pit to the camera 
(Xing et al., 2008). Moreover, the size of the fruit also has 
impact on the quality of transmittance images.

Although the three-band image composition of raw 
spectral data enabled detection of pitted cherries in many 
cases (Fig. 1), the classical segmentation methods applied 
to such images was seen to be insufficient for distinguishing 
cherries with and without a pit, with a satisfactory precision. 
Therefore, multiple variables analysis was undertaken. To 
present the characteristic peaks and troughs more clearly, 
the moving average smoothing procedure and the Savitzky-
Golay second order derivative were applied to the raw 
transmittance data of the all studied variables. This proce-
dure enhanced the features of the spectra by separating out 
peaks of overlapping bands and induced noise filtering of 
the spectral data. Several interesting spectral features are 

apparent in the derivative spectra that were unnoticeable 
in the original spectra. Interestingly, the highest changes in 
curvature occurred between 680-780 nm, while the subtle 
changes proved consistent over the entire spectra. The main 
issue in the study was to distinguish cherries with pit and 
pit fragments from cherries without pits. In Fig. 2, the dif-
ferences between the mean spectra of pitted cherries and 
cherries with pit/pit fragments, treated with second deriva-
tive, are presented for the three cultivars studied. In these 
plots, considerable differences of transmittance spectra are 
observed, especially at peaks and troughs. Based on the 
second derivative transformation of original spectra, the 
27 bands that were situated at maxima or minima were 
selected and marked as dotted vertical lines in Fig. 2. These 
wavelengths were used in the supervised classification 
to distinguish intact and pitted cherries. All the selected 
wavelengths belong to the VNIR region of spectrum. This 
relates to the vibration and combination overtones of the 
C-H, O-H, and N-H bonds in organic molecules. Peaks in 
the range 660-700 nm were recognized as being the spectra 
bands of the anthocyanin pigments, representing the red col-
our of cherry fruits. The absorption peak at approximately 
740 nm could be attributed to the third overtone of the O-H 
functional group in water, and to the fourth overtone of the 
C-H bond. The absorption peaks at approximately 830 nm 
and 918 nm were likely attributable to the third overtone 
of the C-H stretching vibration in sugar (Baiano et al., 
2012). Williams and Norris (2001) found sugar absorption 
bands at approximately 888 nm and 913 nm, and the peak 
that occurred at about 980 nm was assigned to the effect 
of water absorption, and corresponded to the second over-
tones of O-H stretching. Since the wavelengths selected for 
the classification procedure employed are highly correlated 
with SSC in fruits, it can be assumed that SSC can affect 
the precision of pit/pit fragments detection.

Fig. 1. Typical hyperspectral transmittance RGB images of intact 
and pitted cherries of the three cultivars studied (R: 650 nm, 
G: 736 nm, and B: 815 nm).
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In the second method, dimensionality reduction was 
performed by transforming wavelength variables into prin-
cipal components. Subsequently, PCA was applied to the 
smoothed spectral data after the second derivative pre-
treatment. Figure 3 presents the score plot of PCA (PC1 and 
PC3) as applied to the dataset including pitted and intact 
cherry fruits. The first and third principal components 
showed the largest variation in the data. The PCA score plot 
of ‘Groniasta’ cultivar indicates that Groniasta samples can 
be clustered into three classes (cherries without pit, with 
pit fragments and with whole pit) with the presence of 
some overlap (Fig. 3a). For the ‘Łutówka’ cultivar (Fig. 3b), 
the score plot displayed a clear separation of cherries with-
out pit from other groups. The differentiation between 
classes for ‘Pandy 103’ cultivar was, however, not so clear 
(Fig. 3c). Still, in this case, two classes: cherries without pit 
and cherries with whole pit could be separated. 

The final results of comparing classification models used 
for distinguishing between pitted cherries, intact cherries, 
and cherries with pit fragments, as based on 27 wavelengths, 
are presented in Table 2. For all the classification algorithms 
studied, BNN had the best prediction accuracies (87% of 
all correctly classified instances for both training set and 
validation set). However, most of the tested models had 
prediction accuracy close to 75% of all correctly classified 
instances for the training set. From all the models studied, 
the worst classifier was the Naive Bayes (NB) model - 
with 58% of all correctly classified instances. Thus, BNN 
and RF models could be chosen as suitable classifiers for 
distinguishing between particular cultivars of cherries.

The second classification experiment was performed 
to distinguish between pitted cherries, intact cherries, and 
cherries with pit fragments, as based on second deriva-
tive data, taking into account five first PCA components. 
The classification performance results are summarized in 
Table 3. From all the classifiers presented in Table 1, the 
best overall classifier was obtained for the Random Forests 
(RF) model (85% of all correctly classified instances for 
the training/test set and 91% for the validation set). Similar 
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Fig. 3. Score plots of the first and third principal components of 
transmittance spectra of intact and pitted cherries of the three 
cultivars studied. Spectra were pre-processed by use of second 
derivative transformation using a Savitzky-Golay algorithm.

T a b l e  2. Results of classification models for fresh pitted, intact cherries and cherries with pit fragments. The models were created 
based on the wavelengths selected as attributes from the peaks in the second derivative of spectral characteristics

Classification 
model*

Training/ Test set Validation set

Correctly 
classified 

instances (%)
Kappa statistic Root mean 

square error

Correctly 
classified 

instances (%)
Kappa statistic Root mean 

square error

BNN 87.65 0.81 0.25 81.48 0.72 0.29

RF 85.88 0.79 0.26 90.74 0.86 0.24

SVM 82.74 0.74 0.34 88.89 0.83 0.27

LLR 79.22 0.69 0.32 85.19 0.78 0.29

NB 68.63 0.53 0.38 57.41 0.36 0.45

*Classification model for distinguish between pitted and unpitted cherries.
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accuracies of 88 and 83% of all correctly classified instan- 
ces for the training/test set were obtained for BNN and 
Support Vector Machines (SVM) models, respectively.

From all the models under consideration, the BNN clas-
sification model had the highest prediction accuracy of 
detecting pits in cherries. To illustrate how cases belonging 
to different classes were classified by this model, the confu-
sion matrices with distinction between the three cultivars 
studied were presented in Table 4. In the confusion matri-

ces, the diagonal cells show the number of residue positions 
that were correctly classified for each structural class, while 
the off-diagonal cells represent the number of residue posi-
tions that were misclassified. The results obtained for both 
the PCA-BNN and BNN (Table 4) models, as based on 
27 selected wavelengths, were similar. In both models, 
the lowest number of misclassifications were observed 
for the ‘Groniasta’ and ‘Łutówka’ cultivars. The cherries 
with pit fragments were most frequently confused with 

T a b l e  3. Results of classification models for fresh pitted cherries, intact cherries and cherries with pit fragments. The models were 
created based on second derivative data, taking into account the 5 first PCA components

Classification 
model*

Training/ Test set Validation set

Correctly 
classified 

instances (%)
Kappa statistic Root mean 

square error

Correctly 
classified 

instances (%)
Kappa statistic Root mean 

square error

BNN 87.25 0.81 0.26 87.04 0.81 0.26

RF 75.49 0.63 0.34 70.37 0.55 0.30

SVM 72.94 0.59 0.36 72.22 0.58 0.35

LLR 74.31 0.61 0.34 75.92 0.64 0.32

NB 58.23 0.37 0.50 53.70 0.31 0.54

*Classification model for distinguish between pitted and unpitted cherries.

Ta b l e  4. Confusion matrices obtained with 10-fold cross-validation for the BNN-PCA model (a) and for the BNN model (b) based 
on 27 selected wavelengths, for the studied variants as an independent variable. Each cultivar has a specific colour representation and 
the diagonal cells present the correct classification

With pit With pit fragments Without pit

Łutówka Groniasta Panda Łutówka Groniasta Panda Łutówka Groniasta Panda

BNN-PCA model

With pit 58 59 45 2 1 15 0 0 0

96.7% 98.3% 75% 3.3% 1.7% 25% 0% 0% 0%

With pit 
fragments

1 0 7 57 59 53 1 1 0

1.6% 0% 11.7% 95% 98.3% 88.3% 1.6% 1.6% 0%

Without 
pit

0 0 1 0 2 1 60 58 58

0% 0% 1.6% 0% 12.5% 1.6% 100% 96% 96.7%

BNN model

With pit 59 59 44 1 1 16 0 0 0

98.3% 98.3% 73.3% 1.7% 1.7% 26.7% 0% 0% 0%

With pit 
fragments

2 0 7 58 60 53 0 0 0

3.3% 0% 11.7% 96.7% 100% 88.3% 0% 0% 0%

Without 
pit

1 0 1 0 0 0 59 60 59

1.7% 0% 1.7% 0% 0% 0% 98.3% 100% 98.3%
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cherries with a whole pit. These results suggest that the 
overall accuracy of distinguishing between pitted and intact 
cherries was very high (higher than 96%) and comparable to 
the classification precision (96.5%) of the whole pit detec-
tion by Qin and Lu (2005). It was also better than those 
(84.6% correctly classified instances) obtained by Xing et 
al. (2008) for detecting internal insect infestation in tart 
cherries. Moreover, our results are close to those obtained 
by Haff et al. (2013). They achieved recognition rates of 
97.3% for the pitted and 94 % for un-pitted cherries using 
a one dimensional x-ray detector array. Of note, the same 
authors reported that x-ray imaging equipment is expensive 
and bulky, and its implementation on the processing line is 
cumbersome.

Because the cultivars were selected to cover the broad 
range of SSC variations, standard destructive tests were 
performed to verify whether the fruit material would be 
appropriate for modelling the SSC values on the basis of 

hyperspectral measurements. The SSC statistics of the cher-
ry samples of all three cultivars studied are summarized in 
Table 5. The SSC measurements of 180 samples belong-
ing to the three cherry cultivars (60 samples each) were 
fairly normally distributed around the mean value (13.5, 
12.6, and 10.6%, with standard deviation of 0.88, 1.01, and 
1.66 for the ‘Pandy 103’, ‘Groniasta’, and ‘Łutówka’ cul-
tivars, respectively). The normality of the SSC distribution 
was then assessed via the Shapiro-Wilk normality test at 
a significance level equal to 0.05. For the three cultivars 
studied, the W values ranged from 0.983 to 0.987. Taking 
into account that the critical value for 60 samples for this 
test is equal to 0.954 (smaller than all the obtained W va- 
lues), the null hypothesis that the population is normally 
distributed cannot be rejected. It was expected that the 
differences in SSC between cultivars had an effect on the 
transmittance spectral characteristics of cherries. As can 
be seen in Table 4, the cultivar with the highest value of 
SSC (‘Pandy 103’) was characterized by the lowest clas-
sification accuracy when compared with the other studied 
cultivars. The high value of SSC has influence on the tis-
sue optical density and, eventually, on the capability of pit 
detection.

To predict SSC on the basis of the hyperspectral 
transmittance data processed, soft computing modelling 
was performed via both PCA-BNN and BNN models. The 
modelling was carried out using second derivative spectra 
in the wavelength range of 600-1000 nm. In this study, 180 
samples (60 samples for each cultivar) were divided into 
calibration and prediction sets (160:20), which were the 
same for both BNN and PCA-BNN models. The results 
obtained by modelling were subsequently compared with 
the measured SSC values obtained by destructive tests. To 
develop a reliable model, the range of data sets used for 
model creation and model validation should be independent. 
Another requirement is that the range of values should 
be relatively high in both sets. In this study, the variation 
range of the data set used for model creation was from 8.0-
15.6%, and the variation range of the validation set was 
from 8.4-14.9%.

The relationships between the measured versus 
predicted values for SSC (%) including data of the three 
cherry cultivars studied, as obtained via the PCA-BNN 
and BNN models, are shown in Fig. 4a, b, respectively. 
The solid lines are the regression lines corresponding to 
the ideal correlation between the measured and predicted 
values. As evidenced, the predicted values are clustered 

 

 

 

 
 

7
8
9

10
11
12
13
14
15
16

7 8 9 10 11 12 13 14 15 16

Pr
ed

ic
te

d 
SS

C
 (%

) 

Measured SSC (%) 

Pandy 103
Groniasta
Łutówka

R2=0.636 
RMSEP= 0.933 
y = 0.705x + 3.699 

a) 

7
8
9

10
11
12
13
14
15
16

7 8 9 10 11 12 13 14 15 16

Pr
ed

ic
te

d 
SS

C
 (%

) 

Measured SSC (%) 

Pandy 103
Groniasta
Łutówka

R2=0.789 
RMSE=0.775 
y=0.855x+1.818 

b) 

Fig. 4. Scatter plots of BNN predictions of soluble solid SSC ver-
sus refractometric measurements for the ‘Pandy 103’, ‘Groniasta’, 
and ‘Łutówka’ cherries. SSC predictions were obtained using the 
5 first principal components (a) and 27 selected wavelengths, 
based on second derivatives of mean transmittance spectra (b).

T a b l e  5.  The statistics of cherry sample SSC (number of samples 60)

Cultivar SSC (%) SD (%) CV Kutrosis Skewness W

‘Pandy 103’ 13.5 ±0.88 6.54 -0.49 -0.006 0.985

‘Groniasta’ 12.6 ±1.66 13.12 -0.05 -0.317 0.983

‘Łutówka’ 10.6 ±1.01 9.51 -0.04 0.045 0.987
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in two regions corresponding to ‘Łutówka’ and ‘Pandy 
103’/’Groniasta’ cultivars. Thus, a considerable difference 
in SSC exists between these two groups of data. Moreover, 
the minor differences in SSC content between ‘Pandy 
103’ and ‘Groniasta’ brought about a situation in which 
the predicted values for these two cultivars could not be 
separated.

The prediction results showed that both models under 
consideration could be useful to estimate SSC. The 
prediction results for the PCA-BNN model are characterized 
by R2=0.636 and RMSEP=0.933%. The better prediction 
results of R2=0.789 and RMSEP=0.775% were obtained 
via the BNN model with 27 selected wavelengths.

The results obtained in this study are comparable and, in 
many cases, superior to the previous attempts at predicting 
the SSC of fruits on the basis of hyperspectral imaging. The 
prediction accuracy of the SSC obtained in this research 
is better than that obtained by Leive-Valenzuela et al. 
(2014) for blueberries using transmission images (R2 = 0.52 
and RMSEP = 1.39%) and by Lu (2007) for apples based 
on the hyperspectral scattering technique (R2 = 0.76 and 
SEP = 0.72%). Moreover, the second derivative treatment 
of transmission spectra gave better classification results 
(R2 = 0.789 and RMSEP = 0.775%) than the non-derivati- 
sed spectra obtained by Herrera et al. (2003) for pre-
dicting the SSC of Chardonnay grapes (R2 = 0.777 and 
RMSEP = 1.16%). Nonetheless, it is difficult to compare 
prediction accuracy when different species are studied and 
different methodologies are used. For instance, Sun et al. 
(2009) obtained a high SSC prediction accuracy for pears 
(R2 = 0.92 and RMSEP = 0.53%) and Fan et al. (2009) did 
so for apples (R2 = 0.953 and SEP = 0.384%). Similarly, Liu 
et al. (2010) obtained promising results of SSC prediction 
(R = 0.9 and RMSEP = 0.68% Brix) for Nanfeng manda-
rin and navel orange by using a combination PCA-BNN 
method with a multiplicative scatter correction (MSC) 
spectral pre-treatment. Cherries were studied by Carlini 
et al. (2000), with the SSC prediction accuracy proving 
very high (R2 = 0.97 and SEP = 0.49%). Previous research 
has indicated that SSC prediction accuracy can depend on 
measurement mode (transmission, reflectance and interac- 
tance). Schaare and Fraser (2000) assumed that interact-
ance mode spectra provided a very good prediction of 
internal properties of fruit. The SSC of kiwifruit, for exam-
ple, in interactance mode was predicted with R2 = 0.93 and 
SEP = 0.8% Brix, whereas in transmittance mode, R2 = 0.89 
and SEP = 1.01% Brix. 

CONCLUSIONS

1. On the basis of the results presented, it may be 
concluded that the proposed application of hyperspectral 
transmittance imaging increases the potential of pits or pit 
fragments detection in fresh cherries. 

2. Two methods of spectral data reduction, namely 
the analysis of the maxima and minima on the pre-treated 
second derivatives of the spectra or by PCA, and the 
supervised classification methods, enabled the obtaining of 
very high classification accuracies (higher than 96%), when 
compared to earlier studies.

3. The applied methodology of hyperspectral image 
analysis gave high accuracy of whole pits and pit fragments 
detection within cherries for all variants of an experiment 
which covered a broad range of cherry sizes and SSCs. 
However, this accuracy has proven to be negatively 
correlated with SSC. 

4. The unquestionable advantage of the solution 
presented is that the algorithms in question are based on 
a limited number of wavebands from the VNIR spectrum 
(27 wavelengths). This considerably increases the speed of 
the analysis. An effective alternative is the use of 5 PCA 
components when these are derived from the spectral cube 
being the input to the classification models.

5. The specific spectral characteristics in the transmission 
mode of cherries reflected the differentiation of their soluble 
solid content. This was made evident via back propagation 
neural networks models, by high correlation coefficients 
(up to 0.79) between the measured and predicted values. 

6. Taking into account the technological development 
of the current hyperspectral sensors, manifested by the 
increasing speed of image registration and processing, it 
can be expected that the adaptation of the presented solution 
on the sorting lines is quite realistic. 
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